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A theory is presented which describes the propagation of a ring wave on the surface 
of a flow which moves with some prescribed velocity profile. The problem is 
formulated in suitable far-field variables (which give the concentric KdV equation 
for a stationary flow), but allowance is made for the fact that the wavefront is no 
longer circular. The leading order of this small-amplitude long-wave theory reduces 
to a generalized Burns condition which is used to determine the shape of the 
wavefront. This condition is written as 

@'+Id2) dz/[F(z, 8)12 = 1, 

where F(z ,  8) = - 1 + {U(z)  -c} (h  cos 8- h' sine), V(z) is the velocity profile, c is a 
parameter and the local characteristic coordinate for the wave is = rh(8)-t. (The 
Burns condition is interpreted in terms of the finite part of the integral in order to 
allow the possibility of a critical layer where F ( q ,  8)  = 0,O < z, < 1.) The wavefront 
is represented by T = constant/h(8). A model boundary-layer profile, which gives rise 
to a critical-layer solution, is chosen for U(z). The role of this critical-layer solution, 
and the general question of upstream propagation, is then examined by constructing 
a wavefront which is continuous from the downstream to the upstream side. 
Solutions are presented which demonstrate that a critical layer never appears and so 
upstream propagation is necessary. These solutions (for various values of surface 
speed and boundary-layer thickness) are one branch of what we might term the 
singular solution of the differential equation for h(8). The other branch corresponds 
to a solution which has a critical layer for all 8, which would seem to be unphysical 
since this solution is not an outward propagating ring wave. 

At the next order we obtain the equation which describes the dominant 
contribution to the surface wave, in this approximation. The equation is a new form 
of Korteweg-de Vries equation; the novel feature is the dependence on the polar 
angle, 8. This equation is not analysed in any detail here, but the connection with 
plane waves over a shear flow, and with concentric waves in the absence of shear, is 
made. 

s: 

1. Introduction 
The various theories of surface waves are a fruitful area of investigation; for 

example, they may be developed with or without the inclusion of viscous effects or 
surface tension or variable depth. The development may attempt a description of 
nonlinear wave evolution, or incorporate any shear flow - perhaps even a model of 
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turbulent flow-below the free surface. There are numerous choices and com- 
binations. Of all these possibilities, many of them classical problems, one very 
familiar example is the description of circular-ring waves on the surface of a 
stationary fluid. This simple theory is at the heart of the Kelvin ship-wave pattern 
generated by a moving disturbance (see e.g. Stoker 1957 or Crapper 1984). Similarly, 
the analysis of the propagation of plane waves on the surface of a shear (i.e. 
rotational) flow - the flow direction being normal to the wave front - is also a well- 
understood problem. A discussion of this problem, in the limit of long waves, was 
given by Burns (1953). (Although Burns’ name is usually associated with this 
problem, it was first examined by Thompson (1949).) In  this theory the speed of the 
waves ( c )  is determined by an integral constraint of the form 

when written in suitable non-dimensional variables ; U(z)  is the given shear flow. (The 
use of the term ‘shear flow’ is not meant to suggest a velocity profile which is 
generated by a viscous shear stress but rather to indicate the type of rotational 
profile that could be chosen.) The conclusions which follow from this ‘Burns 
condition’ have been discussed by, for example, Benjamin (1957), Velthuizen & 
Wijngaarden (1969) and Yih (1972). It is well known that this integral equation for 
c certainly admits two solutions for c if U(x) satisfies U’(z) > 0 and U”(z) < 0 :  one 
solution gives c < U(0)  and the other c > U(1). 

These two solutions of the Burns condition have generated some discussion, as will 
be seen in the papers cited above. The difficulty is that, if U(1) is quite large as 
compared with U(0)  (which we may as well choose to be zero), then it is possible to 
have a disturbance which propagates upstream (c  < 0) against a fast-flowing stream. 
Some arguments have been marshalled to suggest that this is unreasonable, but Yih 
(1972) confirms that c < 0 is a perfectly respectable solution. One possible alternative 
is to seek another solution which corresponds to the existence of a critical layer i.e. 
0 < c < U(1); see e.g. Benney & Bergeron (1369). It is clear that the Burns 
condition as written cannot admit such a solution (since the integral will not be 
finite). However, a reformulation of the problem allowing for the presence of a 
critical layer a priori leads to the same integral constraint, but now interpreted as a 
finite part, 

see Johnson (1986) for the details relevant to this problem. The solutions of this form 
of the Burns condition for various choices of the shear profile, U(z) ,  are given in 
Johnson (1990) (and some general conditions under which critical-layer solutions will 
occur are also discussed). The appearance of integrals evaluated in terms of their 
finite parts is a common feature of flows which contain a critical layer. 

One standard procedure which is often adopted when analysing the relevance of 
various solutions of the Burns condition (or other similar propagation problems) is 
to examine an individual plane-wave propagating a t  a fixed speed ( c ) .  It is then usual 
to introduce suitable additional physical effects, such as those due to laminar 
viscosity or a Reynolds stress, in order to discuss the stability of the wave. The speed 
of propagation must then be treated as a complex number, c = c,+ici, and the 
possibility of 0 < c, < U(1) as ci+O may be considered (see Lin 1955; Yih 1972). In 
this discussion, however, we shall adopt a different approach. 
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Let us suppose that the Burns condition, (l), admits three solutions, one of which 
is therefore associated with a critical layer so that 0 < c < U( 1) (if, as before, we take 
U(0)  = 0). This solution, like c > U( l ) ,  then corresponds to downstream propagation ; 
there is one solution describing upstream propagation (c < 0). We may then examine 
the strictly inviscid - but rotational - problem of how a ring wave propagates 
(outwards) in the presence of a given velocity profile beneath the surface. The 
furthermost downstream portion of the ring wave will propagate a t  the local speed 
c > U ( l ) ,  in the long-wave approximation. We suppose that the wavefront is 
continuous from the downstream to the upstream side, and we may then determine 
the form of the wavefront. This will, first, enable us to describe how the velocity 
profile (shear flow) affects the shape of the wavefront itself. Secondly, and of some 
considerable interest here, is the question of which solution (locally) of the Burns 
condition is relevant to the propagation near the rearmost portion of the wavefront. 
The ring wave may allow connection to either the critical-layer solution (0 < c < U( 1)) 
or the solution c < 0. It is immediately clear that if the critical-layer solution 
is the favoured one then a critical layer will form on the bed of the flow a t  two 
symmetric points under the wavefront. This critical level will then rise off the 
bottom, attaining a maximum height a t  the rearmost point of the wavefront. On the 
other hand, if the connection is to the solution c < 0 then we might surmise that the 
flow remains non-critical everywhere. Thus our intention is to examine the problem 
of determining the shape of the wavefront (in the long-wave limit and in a suitable 
far field) for propagation over an arbitrary velocity profile, and the consequent 
existence or otherwise of a critical layer. It is not our intention to discuss the 
conventional hydrodynamic-stability aspects of this problem here, 

The description of the problem that we have outlined above relates to the 
propagation of linear long waves in a far field. The far field corresponds to large 
radius, sufficiently large for the geometric decay of the ring wave to be relegated to 
the next order of approximation. (This is what happens in the derivation of the 
concentric KdV equation, mentioned below.) It would seem natural, therefore, to 
develop the analysis further and include nonlinear and other effects. The study of 
nonlinear long-wave motion is one which has been particularly successful in recent 
years, mainly because many of the resulting equations can be solved exactly. The 
most familiar equation of this type is the Korteweg-de Vries (KdV) equation which 
admits N-soliton solutions obtained from the Inverse Scattering Transform (IST) 
method. This classical KdV equation relates to one-dimensional wave propagation, 
but in cylindrical coordinates another form of KdV equation can be derived (the 
concentric KdV equation) and others are possible; see Johnson (1980) for a 
discussion of these various equations as they appear in water-wave theory. The 
problem of determining the form of KdV equation relevant to propagation over a 
shear flow is also not new ; for the case of one-dimensional propagation, see Freeman 
& Johnson (1970). This work came out of an analysis to extend the earlier discussion 
of Benjamin (1962) describing the motion of a solitary wave on an arbitrary 
rotational flow. Here, by suitable choice of the scalings, we shall derive the KdV 
equation which describes the surface ring-wave (not necessarily circular) in the long- 
wave limit and for small amplitudes, in the presence of a shear flow below the surface. 
It is beyond the scope of this work to detail the properties of this new KdV equation, 
but we shall certainly see how it corresponds to the various special cases that are 
readily accessible. 

Thus, in summary, we have three goals in mind. First, we hope to give a fairly 
detailed description of the shape of the wavefront as the ring wave propagates over 
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a shear flow (in the long-wave approximation and at  large radius). (The results of this 
calculation might then be relevant in obtaining the gross features of a velocity profile 
from observations of the details of the shape of the wavefront on the surface.) Of 
more significance, it is expected that the form of the wavefront will shed some light 
on the role of the various solutions of the Burns condition. We can hope to give, using 
our approach, another perspective on the question of upstream/downstream 
propagation ; this is our second aim. Finally, we shall extend the small-amplitude 
long-wave linear theory to encompass a suitable far field where nonlinear, dispersive 
and geometric effects balance. This will lead to the derivation of the appropriate 
KdV equation valid for non-circular ring waves moving over an arbitrary shear flow. 

’ 

2. Governing equations 

conditions are written as 
The Euler equations, the equation of mass conservation, and the boundary 

Dli, 1 D& 1 -  

D i  

- +-vlP = 0, -+-q = -g, v.li = 0, 
Dt P Dt P 

& = O  on x=O, w = ~ ,  P = P ,  on z = 6 .  

Here, d1 = (4, v”) represents the horizontal components only of the velocity vector, 
li E (&8,&). Correspondingly V, represents the x and y components of the operator V ; 
the third (vertical) component of V is a/&. W: shall take p and g to be constants, 
with P = Po = constant on the surface z = h(x, y, t). These equations are non- 
dimensionalized by writing 

Z+ho2, li,+-(gho)&il, k = h,(l+E$), 

where h, is the undisturbed depth of water and E is an amplitude parameter. In order 
to describe the long waves of interest here we also write 

(5, y) + (x, y) hO/ef, t+  (h,/(gh,)~)t/&, 6 +d(gh,)h;; 

the pressure is expressed in terms of its deviation away from the hydrostatic pressure 
distribution, P = P,+pgh,(@+ 1-2). 

The governing equations, (2), now become 

Dli, D& 
-+V,r; = 0, €--+jiZ = 0, v.li = 0, Dt Dt 

& = O  on z = O ,  zi)=e-, D7 # = E $  on z = i + m j .  
Dt 

It is convenient to introduce, a t  this stage, a polar-coordinate frame which is moving 
in the x-direction at a speed c, 

z = ct+rcos8, y = rsin8, (3) 
and c, it turns out, will play the role of a parameter in our analysis. Consistent with 
this choice of independent variables we write 

‘1 (4) 
4 = U(z)+e(ucosO-vsinO), G = E(usinO+vcos8), 

with & =  EW, r; = €p,  I 
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where the arbitrary shear flow in the x-direction is represented by U(z) .  The 
dependence on e in the transformations (4) is consistent with the description of small- 
amplitude motion as e + 0. 

The particular linear and nonlinear theory for a ring wave that we shall describe 
here arises when we make the choice in ( r ,  8, t )  - space where 6 = O(l) ,  R = O(1) with 

6 = rh(8)- t ,  R = eTh(8). ( 5 )  

The wavefront is therefore described by rh(8)-t = constant, and h(8)  is to be 
determined. With this selection of variables (which essentially corresponds to that 
used to derive the concentric KdV equation in Johnson (1980)) we find that the 
leading-order (linear) problem does not incorporate any geometric or dispersive 
effects. However, both these appear a t  the next order, in conjunction with nonlinear 
terms, thereby generating the appropriate KdV equation for this problem. The 
governing equations may now be written in the form 

h hw2 
R R 

hu huw (D, +ED,) w -e( U-c)  -sin 8- U'w sin 8 + e(D, + eD,) ZI + e2 - 
R R 

(D, + eD2)u + e( U - c )  - w sin 8 + U'w cos 8+ e(D, + ED,) u - e2-+ h ( p f +  epR) = 0, 

(6) 

eh 
+h'(pf+ePR)+Rpf3 = O ,  (7) 

p ,  + e(D, + ED,)w + e2(D, + EDJW = 0, (8) 

which are the r-,  8-, z-momentum equations and the equation of mass conservation, 
respectively. The subscripts denote partial derivatives, U' is dU/dz, h' is dhld8 and 
the differential operators (D,) are defined by 

D, G [-1+{U(z)-c}(hcos8-h'sin8)]- a 
36' 

a a  a hw a 
a6 aZ 8R Rae D,  (hu+h'v)-+w-, D, (hu+h'w)-+--. 

The boundary conditions are expressed as 

w = O  on z = O ,  p = q  on z = l + q ,  (10) 

(11)  

where 7 = ~ ( 6 ,  R, 8; E). The problem described by the equations (6)-(11) involves the 
single parameter e ;  we shall construct the asymptotic solution to these equations in 
the limit as e + O .  By virtue of the scalings that have been adopted this parameter, 
as it approaches zero, corresponds to the case of both small amplitude and long waves 
propagating in a far field (i.e. at  large radius). 

w = (D1 + e D 2 ) ~  + e(hu + h'w)gf + e2D, 7 on z = 1 + €7, 
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3. The linear problem 

form 
q - q o + q l  as s+O, 

where q = u, w, w,p, 7. The leading-order equations from (6)-(11) will then describe an 
appropriate linear problem (in the long-wave limit) ; these equations are 

-uo5+ ( U - c )  (h  cos 8-h'sin 8 )  uof. + U'w, cos 8+ hp,, = 0, 

- woI + ( U -  c )  (h  cos 8 - h' sin 8)wo5- U'w, sin 8 + h'pOb = 0, 

We seek a solution of these equations by expanding each dependent variable in the 

(12) 

with 

p,, = 0, huo6+h'woE+ wo, = 0, 

w,=O on z = O ;  

p, = vo, w, = - ~ 0 , + ( U - c ) ( h c o s 8 - h ' s i n 8 ) ~ 0 f  on z = 1. 

We note that, by virtue of the definitions of E and R (see ( 5 ) ) ,  these equations are 
valid a t  a large radius (O(s-i)) but relatively close to the wavefront (O(E-f ) ) .  In  
consequence the geometric decay of the (classical) linear problem is not evident a t  the 
leading order as s+O.  It is clear that p ,  = 7, for ZE [0,1] and then, if we write 

(13) F(z ,  8)  = - 1 +{ U(z )  - c }  (h  cos 8- h' sin 8) ,  

we see that the r- and 8-momentum equations, with the mass conservation equation, 
imply 

(This has the same structure as in the classical Burns problem.) It now follows 
directly that 

-Fw,~+F,w,+ (h2+h'2)70[ = 0 .  

and then the surface boundary-condition on w, requires that 

dz 
( h2 + hf2)  = 1.  J: [l -{U(z)  - c }  (h  cos 8 -  h'sin 8)12 (1-4) 

This integral constraint reduces to the well-known Burns integral if h(8)  = 1 and 
8 = 0;  we shall refer to (14) as the generalized Burns condition. For our purposes we 
shall suppose that the velocity profile, U ( z ) ,  is prescribed and that the speed, c ,  of the 
frame of reference is to  be chosen ; equation (14) then becomes a first-order nonlinear 
ordinary differential equation for h(8) .  At this order the leading-order representation 
of the surface wave, yo, remains undetermined. 

A simple comparison of our formulation with earlier work is afforded by the special 
case of a plane oblique wave moving over a shear flow. To see this we set h = 1 
and take 8 = constant and then, in particular, we may examine z - t z :  where 
z,(O < 2, < 1) is the critical level defined by 

F(zc ,8)  = 0. 

It then follows from the leading-order equations that, for example, 

7 sin8 
w; N -0 as Z - t O ,  dz UC cos2 8 
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where 2-2, = e+Z and the subscript c denotes evaluation at the critical level. The 
corresponding result for ui shows that this component of the velocity is not singular 
as 2 + 0. Both these properties agree with those for the plane oblique wave given by 
Peregrine (1976). (Peregrine also mentions the special class of ‘surface layer 
solutions’ for which wo, is discontinuous a t  the critical level and wo = 0 below it. 
However, as Peregrine points out, these solutions are not relevant in the limit of long 
waves which is the assumption we make here; see Yih 1972.) 

4. The generalized Burns condition 
Earlier, reference was made to the form that the Burns condition takes if a critical 

layer is supposed to occur in the flow. That is, the integral is to be interpreted as 
defined by its finite part. In the work presented here the same situation obtains: if 
the analysis is carried through under the assumption that a critical layer occurs at  
z = z,,O < z ,  < 1, for a given 8, then the finite part of the integral is required. Thus 
the generalized Burns condition, (14), is rewritten as 

(h2 + K 2 )  I,’ dz/[P(z, 8)y = 1, 

where F(z ,  8) is given by (13). We shall assume hereafter that a critical layer may be 
accommodated by choosing to use (15) as the generalized Burns condition. 

Before we turn to a more detailed examination of this equation it is instructive to 
see how, for example, the critical-layer condition F(z ,  8) = 0 arises directly. We 
consider general wavefront propagation where the wavefront itself is given by 

H ( r ,  8 ,  t )  = rh(O)-t = constant. 

The outward unit normal to this front is 

V H  he,. + r e g  
lVHl (h2 + hr2)i ’ 
-= 

where eT,ee are unit vectors in the polar-coordinate directions. Also, the speed 
(outward) of the wave is 

H ,  1 

If this wave is in a frame of reference which is moving at  a speed G in the x-direction, 
then the outward speed, in a fixed frame, normal to the front is 

where cosa = h/(h*+h”)f, sina = h’/(h2 + h“):. Now a critical layer will occur where 
the propagation speed normal to the wavefront equals the speed of the shear flow in 
the same direction, i.e. 

1 
(h2+h )2 

r 2  c CoS (a + e) = u(z) cos (a + e), 

or 

which is precisely F(z ,  8) = 0. 

( U ( z )  -c> (hcos 8-h’ sin 8)  - 1 = 0, 
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One further point: the classical Burns integral is an equation for c given U(z) ,  
whereas in our presentation we argue that c may be arbitrarily assigned. The reason 
for this difference is that the classical Burns integral is valid for plane waves, i.e. the 
shape of the wavefront is fixed, but here we determine h(6). In other words, the 
classical integral determines the speeds a t  which steady plane waves may propagate 
(in the long-wave, small-amplitude approximation). This well-known result is 
recovered from our work if we prescribe h(8) (and 8) and then solve for c ,  e.g. set 
h(8) = 1 and 6 = 0, In our formulation we are given U ( z )  and then we choose the 
frame of reference ( c ) ;  the existence of steady ring-wave solutions is then a question 
of the existence of h(6). Of course, the form of h(6) may be made simpler - or more 
complicated - by the choice of c ,  even though the final shape of the wavefront is the 
same (for all c )  when expressed, for example, in fixed Cartesian coordinates. It turns 
out, not surprisingly, that the most convenient choice for c is c = U(l) ,  the surface 
speed of the flow. 

We now turn to the generalized Burns condition, (15), and discuss its properties by 
choosing to work with a specific velocity profile. Our choice is one which admits a 
critical-layer solution and for which the integration is particularly simple. It is 
anticipated that other more realistic profiles - which also give a critical layer -will 
produce roughly similar results. Of course we make a choice here which leads to a 
straightforward calculation ; other model profiles may not produce such transparent 
details. (For related profiles in connection with the classical Burns condition see 
Velthuizen & Wijngaarden (1969) and Johnson (1990).) The velocity profile we 
choose is 

which embodies all the salient features that we wish to exploit. From (15) and (16) 
we find directly that, for 0 < d < 1 ,  

(h2 + Id2) [ 1 - d + d / {  1 + U,(h cos 8 - h’ sin 8)}] = 1, (17)  

where the choice of frame, c = U,, has been made. To set c = U, is, apart from being 
the choice which gives the simplest form of equation, also the most natural 
preference : the polar coordinate system is moving a t  the surface speed. 

First, (17) is examined in the case 6 = 0 with h’ (0) = 0 (a reasonable assumption 
for the solutions of interest) and then it is clear that the resulting cubic for h(0) has 
only one positive root. This is the solution which is required near 6 = 0 in order to 
produce an outward propagating wave ; in terms of the classical Burns condition it 
is equivalent to the solution c > U,. Correspondingly, if 8 = n and V ( K )  = 0, then the 
roots for h(x) are just the negative of those for h(0) and hence there are now two 
possible solutions which are consistent with outward propagation. These two 
solutions are the counterparts, for the classical Burns condition, of c -= 0 and 
0 < c < U,. 80, for example, if d + 0 then 

for U, =+ 1 ; if U ,  = 1 then 
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In fact, (17) can be solved for all 8 quite easily in the case of a thin boundary layer; 
the relevant solution (i.e. h(0) > 0) is 

if 0 < Ul < 1. On 8 = A solution (20) gives 

which is not the critical-layer solution near 8 = A. Thus the first wavefront profile 
that we have determined - albeit asymptotic - is continuous (and smooth) from 
8 = 0 to 8 = A (or to 8 = -A),  and it is non-critical for all 8. However, there is little 
virtue in exploring this special limit (d -+ 0) to any great extent since (17) can be 
solved completely for all 0 < d < 1. 

A closer inspection of (17) reveals that the general solution can be expressed as 

h(8) = ~ ~ 0 ~ 8 + b ( a ) s i n 8 ,  (21) 

where ( ~ ~ + b ~ ) [ l - d + d / ( l + ~ U , ) ]  = 1. (22) 

Of course, the generalized Burns condition, (15), itself can also be solved by (21) but 
with b(a) now obtained from 

If b is real then the two choices b > 0, b < 0 correspond to 8 > 0, 8 < 0 ; the sign of b 
is therefore essentially irrelevant. This might seem all quite satisfactory at first sight, 
but (21) and (22) are not the end of the story. It transpires that these equations do 
not admit a solution for which h(8) > 0 for all 8;  if h(8) were to change sign then the 
solution is partly an outward propagating wave and partly inward, which is 
unacceptable. Indeed, this would imply that h(8) = 0 for some 8 and then the 
wavefront must extend to infinity ( r  = (const + t)/h(8) -+ 00). It is therefore 
inappropriate to suggest that the ring wave envisaged here (i.e. bounded and 
continuous) could be described by both inward and outward propagating regions. 
(We must remember that the true direction of propagation in the physical frame 
requires the velocity of the moving frame to be introduced.) Although there are 
various configurations of wavefronts for which r -+ CQ, none of them are relevant to 
our problem ; we require the fore and aft portions of the wavefront to be connected. 
It is the constraints imposed by requiring that we have a true ring wave, and then 
what this implies about local upstreem/downstream propagation, that we are 
investigating. Of course, wavefronts which extend to infinity may be of interest in a 
different context. 

To see how the relevant solution arises it is convenient to introduce a parameter. 
Let 

and h’(p) = --a(p)sin?+b(p)cosp, 

then dh/dp = h’(p) implies that 

h(P) = a(p)cosp+b(p)sinp, 

da db 
-cosp+-sinp = 0, 
dP dP 
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where a and b are related by (22). Thus, either a‘(p) = b’ ( p )  = 0 so that a and b are 
constants (which recovers the solution (21) with (22)) or 

I a’(p) = --b’(p) tanp. 
This equation, together with 

h ( p )  = a(p)cosp+b(p)sinp, 

dU,(az + b2) (23) 

and (a2+b2)(1-d+d/(l+aU1)] = 1, 

generates another solution for h. (This second solution is analogous to the singular 
solution of the nonlinear equation for h(8), (17).)  It is a straightforward exercise to 
confirm that, for d + 0, equations (23) recover the asymptotic solution (20) for which 
h(8) > 0 for all 0 < 8 < n. 

Graphical solutions of (23) are presented in figures 1, 2 and 3 for three different 
values of U, and for up to three different boundary-layer thicknesses, d.  The solutions 
are given for 0 < 8 < x (since the symmetric profile is generated for -n < 8 < 0), 
where h(0) and -h(x) are the initial and final values, respectively, of a. To make 
clearer the distortion of the wavefront, owing to the presence of the shear flow, each 
figure includes the corresponding circular-ring wave. All the solutions are expressed 
in a normalized form such that 

r = constant/h(8) = h(O)/h(B). 

The figures indicate quite plainly how the presence of the shear flow distorts what 
would otherwise be a circular-ring wave. We see also that these effects are 
accentuated as the boundary-layer thickness increases (for a given surface speed). 
The general character of all these curves is the same no matter whether the flow be 
subcritical (U,  < 1, figure l ) ,  critical (U,  = 1, figure 2) or supercritical (U,  > 1, figure 
3). This similarity has arisen because, in all cases, the generalized Burns condition 
never produces a solution for which there is a critical layer below the surface (if we 
start from h(0) > 0). However, there is a critical-layer solution if we opt for a 
different condition at 8 = 0 (or a t  another appropriate value of 8),  but we shall argue 
that the resulting solution is physically unacceptable on a number of counts. 

To see how other solutions may arise it is convenient to discuss the details for 
a given value of U, and of d ;  we choose U, = 2 and d = 0.1. (All other solutions, for 
U, > 0 and 0 < d < 1, exhibit precisely the same characteristics.) We choose to 
describe the solutions in terms of a ;  we find that there is no real solution for h(8) if 

-1.106> a or -0.555 < a < -0.485 or a > 1.036; 

we have recorded these values to three decimal places. The wavefront shown in figure 
3, with d = 0.1, is generated by the parameter values 1.036 2 a 2 -0.485. A second 
real solution occurs for -0.555 2 a 2 - 1.106, and in this case a critical layer is 
present below the surface for all 8. Indeed, it is easy to see that with U, = 2 a critical 
layer will exist for a < - 0.5. Consequently this alternative solution maps from 8 = n 
to 0 = 7c (minimum 0 w 2.566) and it has a critical layer everywhere; neither of 
these properties seem tenable for our problem. First, we are seeking a solution which 
describes an outward-propagating ring wave, and so we require h(0) > 0 (since c = U,) ; 
these solutions with critical layers are defined only for x 2 8 2 8, > 0 (where 
8, x 2.6if U,  = 2, d = 0.1). Secondly, there is only one solution with h(0) > 0 and this 
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1.5 1 .o 0.5 '0 0.5 1 .o 
FIQURE 1. Shape of the wavefront (0 < 6' < x )  for U, = 0.5 with (a) d = 0.5; (b)  d = 0.9. 

The broken curve is the corresponding circular-ring wave. 
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FIGURE 2. Shape of the wavefront (0 < 0 < n) for U, = 1 with (a) d = 0.1; ( b )  d = 0.5; (c )  d = 0.9. 
The broken curve is the corresponding circular-ring wave. 

I 

2.5 2.0 1.5 1 .o 0.5 '0 0.5 1 .o 
FIQURE 3. Shape of the wavefront (0 < 0 < x )  for U, = 2 with (a) d = 0.1; (a) d = 0.5. 

The broken curve is the corresponding circular-ring wave. 

solution does not exhibit a critical layer near 8 = 0: any solution of interest here 
must therefore have no critical layer at  least for some 8. The two real solutions are 
represented in figure 4, where h(8) itself is drawn. Of course, the two real branches 
of the solution are not connected: either there is, or there is not, a critical layer 
beneath the wavefront for all 8. (It is possible to construct a solution which makes 

6 FLM 215 



156 R. X. Johnson 

' 0  0.5 I .o 
FIGURE 4. The real branches of h(B), drawn in polar form, for U, = 2 and d = 0.1. Parameter 

values (a) 1.036 >, a 3 -0.485; (6) -0.555 >, a 3 - 1.106. 

use of one (or more) non-singular solutions (i.e. from (21) and (22)) to connect the two 
branches, but the resulting solution will exhibit discontinuities both in h'(8) and in 
the height of the critical level.) 

5. Nonlinear wave propagation 
We now turn our attention to  the problem of finding the shape and properties of 

the surface wave itself, as expressed in far-field variables. We anticipate that the 
dominant behaviour of 7 (i.e. ?lo) ,  for E + O ,  will exhibit nonlinear and dispersive 
effects in the form of a KdV-like equation. Furthermore, by virtue of the scaling used 
to define the far-field region, a contribution from the geometrical decay of the ring 
wave will also occur a t  this order. In  this section we shall outline the derivation of 
this equation. The procedure is a very familiar one : it involves finding the equations 
valid a t  O ( E )  which eventually lead to, when the surface boundary conditions are 
employed, the elimination of ql. The remaining equation involves the single unknown 
function qo(c, R, 8). 

From (6)-(11) we find that the O ( E )  terms yield 

hw 
R D, u1 + D,uo+ ( U -  c )  >sin 8 + U'w, cos 8+ D,,u0+ h( pl5+p0,) = 0, 

D, w1 + D, uo - (U-c)  A s i n  8- U'w, sin 8 + D,, wo + h'(pIf+poR) + -poo = 0, 
hu h 
R R 

PI(+ D, wo = 0, 

with w1 = O  on z = O ,  

and 
on z =  1. 

T o  Po, +PI = 71 3 

howol+w, = D l ~ , + D , q 0 +  U ' ( h c o s 8 - h ' s i n 8 ) ~ o ~ o f + ( ~ u o + q ' w o ) ~ o ~  

Here we have used the same notation as earlier, and in addition D,, denotes the 
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operator D, expressed in terms of uo, wo and wo. It then follows directly that, for 
example, 

P, = %+ ~ h ~ + h / l ) o y ~ F ~ ( ~ 1 F - ~ d z 2 ) d z 1 ,  

where F = F(z ,  6) is the function defined by (13) .  We now form the combination 
(hD, u, + h’D, w,) from the first two equations, and eliminate (hu, + h’w,) by 
using the equation of mass conservation. The resulting equation for w1 is solved, in 
conjunction with the bottom and surface boundary conditions, and p ,  (as given 
above) is introduced. This procedure leads to a single equation in qo since 7, is 
eliminated by virtue of the Burns condition, equation (14) .  The final equation may 
be written as 

(24)  
B C  

~ ~ o , + ~ ~ 0 + ~ ~ 0 8 + ~ ~ o t o ~ + ~ r o , , ,  = 0, 

where A,  . . . E are coefficients which depend on 8 ; they are defined by 

A = 2(h2 +V2) I,, D = - 3(h2 + h’,),14, 

[h(h sin 8 + h‘ cos @I, + (h2 + h’,) I3 sin 81, 
2h 

h’ sin 6- h cos 6 
C =  

and 

where 

( I ,  + U, +I4) (1 - 4  sin 6) sin 8 
h(h + h”) (h2 + h’2) 

B =  
(hc0~8-h’sinO)~ 

h(h + h”) [ (h  cos 6 + 3h’ sin 6)1, + 4h’1, sin 61, 

dx 

+ h‘ sin 6 - h cos 8 

In = \: IF@, 6)]“ ’ 

and we have chosen c = U(1). The generalized Burns condition, expressed in this 
notation, becomes 

If a critical layer is present then each I ,  is evaluated as the finite part of the integral. 
The new KdV, (24) ,  which we have presented here contains a novel feature: the 

dependence on the angle 8. This appears both by virtue of the &dependence of the 
coefficients and the inclusion of the term in qOA. It is now a simple exercise to compare 
this equation with similar KdV equations derived for simpler geometries. First, we 
observe that the coefficients A, D and E are (apart from the factors (h2+hr2) , ,  
n = 1, 2) precisely those obtained for the KdV equation which describes the 
one-dimensional flow of waves over a shear flow; see Freeman & Johnson (1970). 
Since there is no &dependence in that case, and the choice of frame is not relev- 
ant, F(z ,  8) is replaced by F ( z )  = U(z)-c.  Secondly, and of more significance, is the 
comparison of our new equation with the concentric (or cylindrical) KdV equation 
for water waves. To see the connection we choose h = 1 (so that we have circular 
ring-waves) and take U(z)  = constant = U(1); then F ( z ,  6) = - 1 which gives 

(h2+h12)12 = 1 .  

A = - 2 ,  B = - l ,  C = O ,  D = - 3 ,  E = - $ ,  
6-2 
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and so (24) becomes 
'I 

2'1,~ + 2 + 3'1, 'I,~ + %oc6t = 0. 

This is the concentric KdV equation as given by Johnson (1980) where the variables 
used there correspond with the far-field variables used here. 

A number of variants of the KdV equation can be solved completely, for the 
initial-valve problem, by employing the Inverse Scattering Transform (IST) method. 
This approach is certainly successful, for example, when applied to the classical KdV 
eauation 

ut - ~ U U ,  + u,,, = 0, 

(which has been written in the usual form). The concentric KdV equation, (25), can 
be solved in a similar fashion; see Calogero & Degasperis (1978); Drazin & Johnson 
(1989). However it would appear that our new KdV equation, (24), cannot be solved 
by using these methods. Numerical solutions of (24), and properties of q,([,B, @), are 
left for future study although a few observations are made in the discussion. 

6.  Discussion 
We have presented a theory for the propagation of a ring wave on the surface of 

a shear flow. I n  the long-wave approximation a suitable linear problem has been 
discussed; this has provided a description of how the shape of the wavefront is 
distorted by the shear flow below the surface. The technique that we have adopted 
has resulted in a representation of the wavefront which requires the solution, for h(@),  
of a generalized Burns condition. This solution has been determined for a simple, but 
fairly realistic, choice of the velocity profile, and various ring-wave solutions have 
been presented. 

Although we have not included the effects of viscosity on the propagating wave, 
we might reasonably suppose that the gross features of the shape of the wavefront 
will be supported by observations. Clearly, i t  is of some interest and significance to 
see to what extent our theory falls short of the reality. At best, i t  is to be expected 
that the shape of the wavefront will develop according to some general 
characteristic(s) of the shear profile, e.g. perhaps an average measure of the 
boundary-layer thickness. There may be some virtue in undertaking an experi- 
mental/observational study in order to see whether the shape of the wavefront can 
be used to deduce some information about the flow below the surface. 

Our main interest, of course, has been in the technical question relating to the role 
of the various solutions of the generalized Burns condition. (This integral condition, 
near 6 = 0 and 8 = n, reduces to essentially the classical Burns condition.) The 
results presented here have attempted to shed a different light on the question of 
upstream/downstream propagation. That is, which solutions of the Burns condition 
are relevant when a critical-layer solution is available ? We have shown that the only 
realistic solution (i.e. with h(0)  > 0) never exhibits a critical layer below the 
wavefront. Consequently the rearmost portion of the wavefront moves at  the (local) 
Burns speed associated with upstream propagation. Furthermore, this solution 
describes a wavefront which is continuous and smooth for all 0. There is another sol- 
ution but this corresponds to the existence of a critical layer for all @ €  [@,, n], 8, > 0, 
and such a solution does not seem viable. We have argued that a realistic solution 
will not have a critical layer, in particular, near to the furthest downstream region 
of the wavefront. The possibility of connecting these two branches of the solution for 
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h(8), which we might term the singular solution, was not seriously entertained. The 
critical-layer solution, although not relevant to our description of the ring wave, 
might apply to other propagation phenomena such as the class of solutions with 
critical layers mentioned by Teles da Silva & Peregrine (1988). 

One of the advantages of developing a long-wave far-field theory is that it is then 
a fairly simple exercise to extend the calculation. So, for example, we are able to find 
the equation which describes the dominant behaviour of the surface wave; this 
equation is essentially a balance between nonlinearity, dispersion and geometrical 
decay. With q - qo([,R, 8), as e + O ,  then we have shown that 

where the coefficients A ,  ... E are functions of 8. The profile and the far field are 
defined so that .$ is the local characteristic variable, and R is the radial variable 
(which is therefore analogous to time, for large time). The new and significant feature 
in this KdV equation is the dependence on 8. Although the detailed analysis of this 
equation is an important issue, it  would seem to be too extensive for us to undertake 
here. However, a few useful observations can be made which indicate that some 
measure of headway is possible. 

First, let us write 

qo(&R,@ = H,([,R,r$dB-lnR), 

provided C(8) =+ 0, and then the equation for H,, is 

B 
R AHoR + - H, + DH, HOE + EHofIE = 0. 

Now (26) is nearly the concentric KdV equation, but where the coefficients A ,  B, D 
and E are functions of ([+lnR), 

Note, however, that in (26) the new independent variable [ appears only as a 
parameter. A second manoeuvre that would be helpful is to rescale H,, R and [ and 
hence eliminate, as far as possible, the variable coefficients. Unfortunately these 
coefficients depend on R ;  if they were functions only of 6 then this would prove 
successful (although even then (26) could not be transformed into the concentric 
KdV equation since A / B  =?= 2 in general). Hence we are forced to conclude that (26), 
which retains the general characteristics of the concentric KdV equation, is probably 
expressed in its most convenient form. (Of course, other options are available; if we 
ignore [ - a parameter - then the coefficients are functions of R and so there may be 
a case for writing the solution as H ,  = a(R) G(P(R), [) for suitable a(R), P(R).) The 
properties of the new KdV equation, and other aspects of the problem (such as the 
inclusion of viscous effects in the linear theory), are left for future study. 

The author acknowledges some useful comments made by two referees on an 
earlier version of this paper. 
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